WebLLM API Reference

The MLCEngine class is the core interface of WebLLM. It enables model loading, chat completions, embeddings, and other operations. Below, we document its methods, along with the associated configuration interfaces.

Interfaces

The following interfaces are used as parameters or configurations within MLCEngine methods. They are linked to their respective methods for reference.

MLCEngineConfig

Optional configurations for CreateMLCEngine() and CreateWebWorkerMLCEngine().

  • Fields:
    • appConfig: Configure the app, including the list of models and whether to use IndexedDB cache.

    • initProgressCallback: A callback for showing model loading progress.

    • logitProcessorRegistry: A registry for stateful logit processors (see webllm.LogitProcessor).

  • Usage:
    • appConfig: Contains application-specific settings, including:
      • Model configurations.

      • IndexedDB caching preferences.

    • initProgressCallback: Allows developers to visualize model loading progress by implementing a callback.

    • logitProcessorRegistry: A Map object for registering custom logit processors. Only applies to MLCEngine.

Note

All fields are optional, and logitProcessorRegistry is only used in MLCEngine.

Example:

const engine = await CreateMLCEngine("Llama-3.1-8B-Instruct", {
    appConfig: { /* app-specific config */ },
    initProgressCallback: (progress) => console.log(progress),
});

GenerationConfig

Configurations for a single generation task, primarily used in chat completions.

  • Fields:
    • repetition_penalty, ignore_eos: Parameters specific to MLC models.

    • top_p, temperature, max_tokens, stop: Common parameters shared with OpenAI APIs.

    • frequency_penalty, presence_penalty: Tune repetition behavior following OpenAI semantics.

    • logit_bias, n, logprobs, top_logprobs: Advanced sampling controls.

    • response_format, enable_thinking, enable_latency_breakdown: Additional OpenAI-style request features.

  • Usage:
    • Fields like repetition_penalty and ignore_eos give explicit control over repetition handling and whether the model stops at the EOS token, respectively.

    • Common parameters shared with OpenAI APIs (e.g., temperature, top_p) ensure compatibility while still falling back to the values configured during MLCEngine.reload() when omitted.

    • frequency_penalty and presence_penalty mirror OpenAI’s bounds [-2, 2]; providing only one will default the other to 0.

    • response_format (for JSON or other schema outputs), enable_thinking, and enable_latency_breakdown pass through directly to the engine and surface enhanced telemetry or structured responses when the underlying model supports them.

Example:

const messages = [
    { role: "system", content: "You are a helpful assistant." },
    { role: "user", content: "Explain WebLLM." },
];

const response = await engine.chatCompletion({
    messages,
    top_p: 0.9,
    temperature: 0.8,
    max_tokens: 150,
});

ChatConfig

Model’s baseline configuration loaded from mlc-chat-config.json when MLCEngine.reload() runs. ChatOptions (and therefore the chatOpts argument to reload) can override any subset of these fields.

  • Fields (subset):
    • tokenizer_files, tokenizer_info: Files and parameters required to initialize the tokenizer.

    • conv_template, conv_config: Conversation templates that define prompts, separators, and role formatting.

    • context_window_size, sliding_window_size, attention_sink_size: KV-cache and memory settings.

    • Default generation knobs such as repetition_penalty, frequency_penalty, presence_penalty, top_p, and temperature.

  • Usage:
    • Loaded automatically for each model; provides defaults that GenerationConfig falls back to when fields are omitted.

    • Override selected values per model load by supplying chatOpts (Partial<ChatConfig>) to MLCEngine.reload().

Example:

await engine.reload("Llama-3.1-8B-Instruct", {
    temperature: 0.7,
    repetition_penalty: 1.1,
    context_window_size: 4096,
});

ChatCompletionRequest

Defines the structure for chat completion requests.

  • Base Interface: ChatCompletionRequestBase
    • Contains parameters such as messages, stream, frequency_penalty, and presence_penalty.

  • Sub-interfaces:
    • ChatCompletionRequestNonStreaming: For non-streaming completions.

    • ChatCompletionRequestStreaming: For streaming completions.

  • Usage:
    • Combines settings from GenerationConfig and ChatCompletionRequestBase to provide complete control over chat behavior.

    • The stream parameter enables streaming responses, improving interactivity in conversational agents.

    • The logit_bias feature allows controlling token generation probabilities, providing a mechanism to restrict or encourage specific outputs.

Example:

const response = await engine.chatCompletion({
    messages: [
        { role: "user", content: "Tell me about WebLLM." },
    ],
    stream: true,
});

Model Loading

MLCEngine.reload(modelId: string | string[], chatOpts?: ChatOptions | ChatOptions[]): Promise<void>

Loads the specified model(s) into the engine. Uses MLCEngineConfig during initialization.

  • Parameters:
    • modelId: Identifier(s) for the model(s) to load.

    • chatOpts: Configuration for generation (see ChatConfig).

Example:

await engine.reload(["Llama-3.1-8B", "Gemma-2B"], [
    { temperature: 0.7 },
    { top_p: 0.9 },
]);

MLCEngine.unload(): Promise<void>

Unloads all loaded models and clears their associated configurations.

Example:

await engine.unload();

Chat Completions

MLCEngine.chat.completions.create(request: ChatCompletionRequest): Promise<ChatCompletion | AsyncIterable<ChatCompletionChunk>>

Generates chat-based completions using a specified request configuration.

  • Parameters: - request: A ChatCompletionRequest instance.

Example:

const response = await engine.chat.completions.create({
    messages: [
        { role: "system", content: "You are a helpful AI assistant." },
        { role: "user", content: "What is WebLLM?" },
    ],
    temperature: 0.8,
    stream: false,
});

Utility Methods

MLCEngine.getMessage(modelId?: string): Promise<string>

Retrieves the current output message from the specified model.

  • Parameters:
    • modelId: (Optional) Identifier of model to query. Omitting modelId only works when the engine currently has a single model loaded.

MLCEngine.resetChat(keepStats?: boolean, modelId?: string): Promise<void>

Resets the chat history and optionally retains usage statistics.

  • Parameters:
    • keepStats: (Optional) If true, retains usage statistics.

    • modelId: (Optional) Identifier of the model to reset. Omitting modelId only works when the engine currently has a single model loaded.

GPU Information

The following methods provide detailed information about the GPU used for WebLLM computations.

MLCEngine.getGPUVendor(): Promise<string>

Retrieves the vendor name of the GPU used for computations. This is useful for understanding hardware capabilities during inference.

  • Returns: A string indicating the GPU vendor (e.g., “Intel”, “NVIDIA”).

Example:

const gpuVendor = await engine.getGPUVendor();
console.log(``GPU Vendor: ${gpuVendor}``);

MLCEngine.getMaxStorageBufferBindingSize(): Promise<number>

Returns the maximum storage buffer size supported by the GPU. This is important when working with larger models that require significant memory for processing.

  • Returns: A number representing the maximum size in bytes.

Example:

const maxBufferSize = await engine.getMaxStorageBufferBindingSize();
console.log(``Max Storage Buffer Binding Size: ${maxBufferSize}``);